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We study the operator H := −∆ + δV on Zd , where
∆ is the discrete Laplacian:

∆u(a) = −2du(a) +
∑

b∈Zd ,|a−b|=1

u(b).

V : Zd → R is the Bernoulli random potential:
P[V (a) = 0] = P[V (a) = 1] = 1

2 .
δ > 0 is the disorder strength.

Physics meaning:

An electron hopping inside a metal with uniform impurity.

Lingfu Zhang Princeton 3d Anderson December 4, 2019



We study the operator H := −∆ + δV on Zd , where
∆ is the discrete Laplacian:

∆u(a) = −2du(a) +
∑

b∈Zd ,|a−b|=1

u(b).

V : Zd → R is the Bernoulli random potential:
P[V (a) = 0] = P[V (a) = 1] = 1

2 .
δ > 0 is the disorder strength.

Physics meaning:

An electron hopping inside a metal with uniform impurity.

Lingfu Zhang Princeton 3d Anderson December 4, 2019



Recall:
sp(−∆) = [0,4d ], and almost surely sp(H) = [0,4d + δ].

With perturbation δV , random operator H can have eigenvalues,
with eigenfunctions exponentially localized.

Definition (Anderson localization)

An operator H has Anderson localization (AL) in I ⊂ sp(H), if
for any polynomially bounded eigenfunction u with eigenvalue in
I, there exist c,C > 0, such that |u(a)| ≤ C exp(−c|a|),∀a ∈ Zd .

Note that this is actually the spectral localization (to be distin-
guished from dynamical localization).

Theorem (Li and Z., 2019)

There exists λ∗ > 0 depending on δ, such that AL holds for
H = −∆ + δV on Z3, in [0, λ∗].
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A (very limited) historical review of Anderson Localization:
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A (very limited) historical review of Anderson Localization:

When the random potential has continuous distribution:

1 On Zd , if the random potential distribution has bounded
density, then AL holds in the whole spectrum when δ is
large enough, or near the edge or the spectrum.
(Fröhlich and Spencer, 1983)
(Fröhlich, Martinelli, Scoppola, and Spencer, 1985)

2 The same result holds under the condition where the
random potential has Hölder continuous distribution.
(Carmona, Klein, and Martinelli, 1987)
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On Z, AL holds in the whole spectrum with any nontrivial i.i.d.
random potential and any δ > 0.
(Kunz and Souillard, 1980)
(Carmona, Klein, and Martinelli, 1987)
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Much less is known for Bernoulli potential in dimension ≥ 2.
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A (very limited) historical review of Anderson Localization:

Much less is known for Bernoulli potential in dimension ≥ 2.

1 A breakthrough was made by Bourgain and Kenig, where
they studied −∆ + V on Rd instead of the lattice.

The potential is defined as V (x) =
∑

j∈Zd εjφ(x − j), where
{εj : j} are i.i.d. Bernoulli random variables and φ is a
nonnegative bump function supported in {x ∈ R : |x | ≤ 1

10}.

They proved that AL holds in [0, ε], for some ε > 0.

2 Inspired by a Liouville theorem of Buhovsky, Logunov,
Malinnikova, and Sodin, on Z2 it was recently proved by
Ding and Smart that for −∆ + δV , AL holds in [0, ε], for
some ε > 0 (depending on δ).

Lingfu Zhang Princeton 3d Anderson December 4, 2019



A (very limited) historical review of Anderson Localization:

Much less is known for Bernoulli potential in dimension ≥ 2.

1 A breakthrough was made by Bourgain and Kenig, where
they studied −∆ + V on Rd instead of the lattice.

The potential is defined as V (x) =
∑

j∈Zd εjφ(x − j), where
{εj : j} are i.i.d. Bernoulli random variables and φ is a
nonnegative bump function supported in {x ∈ R : |x | ≤ 1

10}.

They proved that AL holds in [0, ε], for some ε > 0.

2 Inspired by a Liouville theorem of Buhovsky, Logunov,
Malinnikova, and Sodin, on Z2 it was recently proved by
Ding and Smart that for −∆ + δV , AL holds in [0, ε], for
some ε > 0 (depending on δ).

Lingfu Zhang Princeton 3d Anderson December 4, 2019



Framework of Bourgain-Kenig and Ding-Smart
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At a high level: some ingredients for the Bernoulli case

For simplicity, take δ = 1 and study −∆ + V .

Reduce to exponential decay of the resolvent.
Multi-scale analysis.
Key step: Wegner estimate (existence of eigenvalue inside
an interval).

Theorem (Wegner, 1981)

Take a self-adjoint operator A on Rn, and V = diag(V1, · · · ,Vn),
an i.i.d. random potential with distribution density bounded by
λ. Then for any J ⊂ R,

P(exists an eigenvalue of A + V in J) ≤ λn|J|.

There is (as of now) no available such estimates for Bernoulli
potentials.

Prove a weak Wegner-type estimate within induction on scales.
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Wegner-Type Estimate

Arguments from the proof of the Wegner-type estimate:
Let Qn = {a ∈ Zd : ‖a‖∞ ≤ n}.
For −∆ + V on Qn with Dirichlet boundary condition, let its
eigenvalues be λ1 ≤ λ2 ≤ · · · .

Given some fixed r ∈ R and j , we want a bound:

P(|λj − r | < exp(−n1−ε)) < n−δ0

for some δ0 > 0.
Consider the collection of potential:

A := {V : |λj − r | < exp(−n1−ε)} ⊂ {0,1}Qn .

It is equivalent to show that |A| ≤ 2(2n+1)d
n−δ0 .
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Wegner-Type Estimate

Following Bourgain and Kenig, 2005, we wish to control |A| us-
ing variation arguments and Sperner’s Theorem.

Theorem (Sperner’s Theorem)

A family of sets is called a Sperner family, if none of them is a
strict subset of another. IfM is a Sperner family of subsets of
{1,2, · · · ,m}, then we have

|M| ≤
(

m⌊m
2

⌋).

If |A| >
( m
bm

2 c
)

for m = (2n+1)d , there are two different potentials
V1 ≤ V2 ∈ A, such that for both −∆ + V1 and −∆ + V2, we have
|λj − r | < exp(−n1−ε).
By a variation argument, this is not possible if |uj(a)| is not too
small for some a with V1(a) 6= V2(a).
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Wegner-Type Estimate: Quantitative Unique Continuation Principle

For Rd , one can show that the eigenfunction cannot be too small
anywhere.

Theorem (Bourgain and Kenig, 2005, quantitative unique
continuation principle on Rd )

Suppose u ∈ C2(Rd ), |∆u(a)| ≤ C|u(a)| ≤ C2|u(0)| for any
a ∈ Br . Then∫

B1(a)
|u(x)|dx ≥ |u(0)|exp(−c|a|

4
3 log(|a|))

for any a ∈ Br/2.

Thus |A| ≤
( m
bm

2 c
)

for m = (2n + 1)d .

On Zd , such u can be supported on a “lower dimension” set.
Example: on Z3, let u : (x , y , z) 7→ (−1)x exp(sz)1x=y , where
s ∈ R+ is the constant satisfying exp(s) + exp(−s) = 6.
One can check that ∆u = 0.
We need a discrete unique continuation principle (DUCP).
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Wegner-Type Estimate: Generalized Sperner’s Theorem

As the eigenfunction can be very small except for a small set,
we need a generalized Sperner’s Theorem.

Theorem (Ding and Smart, 2019)

Let m′ < m ∈ Z+, andM be a family of subsets of
{1,2, · · · ,m}. SupposeM satisfies that, for every A ∈M,
there is a set B(A) ⊂ {1,2, · · · ,m} \ A such that |B(A)| ≥ m′,
and A ⊂ A′ ∈M implies A′

⋂
B(A) = ∅. Then we have

|M| ≤ 2mm
1
2 m′−1.

Note that in order to have a nontrivial bound for |M|, one only
needs m′ > m

1
2 .

Each potential V ∈ A corresponds to an AV ⊂ Qn, and we let
B(AV ) := {a ∈ Qn \ Av : |uj(a)| > C−n‖uj‖`∞(Qn)} ⊂ Qn \ AV .

We wish to show that each |B(AV )| > n
d
2 +δ0 .
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Theorem (Ding and Smart, 2019)

Let m′ < m ∈ Z+, andM be a family of subsets of
{1,2, · · · ,m}. SupposeM satisfies that, for every A ∈M,
there is a set B(A) ⊂ {1,2, · · · ,m} \ A such that |B(A)| ≥ m′,
and A ⊂ A′ ∈M implies A′

⋂
B(A) = ∅. Then we have

|M| ≤ 2mm
1
2 m′−1.

Note that in order to have a nontrivial bound for |M|, one only
needs m′ > m

1
2 .

Each potential V ∈ A corresponds to an AV ⊂ Qn, and we let
B(AV ) := {a ∈ Qn \ Av : |uj(a)| > C−n‖uj‖`∞(Qn)} ⊂ Qn \ AV .

We wish to show that each |B(AV )| > n
d
2 +δ0 .
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2D Discrete Unique Continuation Principle

The case where there is no potential:

Theorem (Buhovsky, Logunov, Malinnikova, and Sodin, 2017)

For d = 2, there exist universal constants C, ε > 0 such that the
following holds. Suppose u : Qn → R satisfy ∆u = 0 in Qn and
|u(0)| = 1, then

|{a ∈ Qn : |u(a)| ≥ C−n}| ≥ εn2.

This is not true for arbitrary potential.
Consider u : (x , y) 7→ (−1)x1x=y , then we have ∆u = −4u.
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2D Discrete Unique Continuation Principle

However, inspired by their method, a probabilistic version of 2D
DUCP is proved.

Theorem (Ding and Smart, 2019)

There are constants α > 1 > ε > 0 such that, if λ ∈ R and
n > α, then P(E) ≥ 1− exp(−εn

1
4 ), where E denotes the event

that

|{a ∈ Qn : |u(a)| ≥ exp(−αnlog(n))|u(0)|}| ≥ εn
3
2 log(n)−1

holds whenever |λ− λ′| < exp(−α(n log(n))
1
2 ), and

(−∆ + V )u = λ′u in Qn.
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Discrete unique continuation principle on Z3
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3D Discrete Unique Continuation Principle

Unlike the 2D lattice, on the 3D lattice, the desired DUCP holds
for any potential, rather than just for typical ones.

Theorem (Li and Z., 2019)

There exists constant p > 3
2 such that the following holds. For

each K > 0, there are constants C0,C1 > 0, such that for any
n ∈ Z+, and functions u,V : Z3 → R with ∆u = Vu, and
‖V‖∞ ≤ K in Qn, we have that

|{a ∈ Qn : |u(a)| ≥ exp(−C0n)|u(0)|}| ≥ C1np.

Following the framework of Bourgain-Kenig and Ding-Smart, this
implies 3D Anderson-Bernoulli localization.
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3D Discrete Unique Continuation Principle

We first prove a “small scale DUCP”.

Theorem (Li and Z., small scale DUCP)

For each K > 0, there exist C0,C1 relying only on K , such that
for any n ∈ Z+ and functions u,V : Z3 → R with ∆u = Vu, and
‖V‖∞ ≤ K in Qn, we have that∣∣∣{a ∈ Qn : |u(a)| ≥ exp(−C0n3)|u(0)|

}∣∣∣ ≥ C1n2(log(n))−1.

Note that the power of n2 cannot be improved, by the example
u : (x , y , z) 7→ (−1)x1x=y .
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Ideas of the Small Scale DUCP

The proof is based on geometric arguments on Z3.

We consider four collections of planes in R3.

Definition
Let e1 := (1,0,0), e2 := (0,1,0), and e3 := (0,0,1) to be the
standard basis of R3, and denote λ1 := e1 + e2 + e3,
λ2 := −e1 + e2 + e3, λ3 := e1 − e2 + e3, λ4 := −e1 − e2 + e3.
For any k ∈ Z, and τ ∈ {1,2,3,4}, denote
Pτ,k :=

{
a ∈ R3 : a · λτ = k

}
.

We note that the intersection of Z3 with each of these planes is
a 2D triangular lattice.
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Ideas of the Small Scale DUCP: 2D Triangular Lattice

Λn

0

ξ

η

Using arguments similar to that of Buhovsky, Logunov, Malin-
nikova, and Sodin, we get estimates on the 2D triangular lattice.

Theorem (Li and Z., 2D triangular lattice estimate)

There exist constants C, c > 0, such that for any positive
integer n and any function u : Λ→ R, if
|u(a) + u(a− ξ) + u(a + η)| < C−n|u(0)| for any a ∈ Λn, then∣∣{a ∈ Λn : |u(a)| > C−n|u(0)|}

∣∣ > cn2.
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Ideas of the Small Scale DUCP: Decomposition

Next we decompose Z3 into triangular lattice in Pτ,k .

Step 1. On P1,0 = {(x , y , z) : x + y + z = 0}, find a sequence
of triangles T0,T1, · · · .

a0 = 0
a1

a2

a3

For a0,a1, · · · being the middle points of one side of T0,T1, · · · ,
we have |u(a′)| < C−n|u(ai)| for a′ inside Ti .
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Ideas of the Small Scale DUCP: Decomposition

Next we decompose Z3 into triangular lattice in Pτ,k .
Step 2. Using each Ti as basement, construct a pyramid.

ai

Each face of the boundary of the pyramid is a subset of
some plane Pτ,k .
By construction we ensure that |u| < C−n|u(ai)| inside the
pyramid, while on the boundary there are points with large
|u|.
Apply the estimates on 2D triangular lattice to the faces.
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3D Discrete Unique Continuation Principle

Now we have that∣∣∣{a ∈ Qn : |u(a)| ≥ exp(−C0n3)|u(0)|
}∣∣∣ ≥ C1n2(log(n))−1.

To finish the proof of DUCP, we find many copies of Qn1/3 inside
Qn, and apply small scale DUCP to each of them.

Theorem (Large Scale DUCP)

There exist universal constants β and α > 5
4 such that for any

positive integers m ≤ n and any positive real K , the following is
true. For any u,V : Z3 → R such that ∆u = Vu and ‖V‖∞ ≤ K
in Qn, we can find a subset Θ ⊂ Qn with |Θ| ≥ β

( n
m

)α, such
that

1 |u(b)| ≥ (K + 11)−12n|u(0)| for each b ∈ Θ.
2 Qm(b)

⋂
Qm(b′) = ∅ for b,b′ ∈ Θ, b 6= b′.

3 Qm(b) ⊆ Qn for each b ∈ Θ.

We take m = n1/3, and apply small scale DUCP to each Qn1/3(b).
Note that we cannot directly get DUCP by taking m = 1.
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Ideas of the Large Scale DUCP: Cone Property

Fix m and do induction on n:

find a few b ∈ Qn, |u(b)| ≥ (K + 11)−2n|u(0)|, and are far away
from each other; then apply induction hypothesis to cubes cen-
tered at each b.

Lemma (One Step Cone Property)

For any a ∈ Z3, s ∈ {±e1,±e2,±e3}, we have

max
b∈a+s+{0,±e1,±e2,±e3}\{a}

|u(b)| ≥ (K + 11)−1|u(a)|.
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Ideas of the Large Scale DUCP: Cone Property

Lemma (One Step Cone Property)

For any a ∈ Z3, s ∈ {±e1,±e2,±e3}, we have

max
b∈a+s+{0,±e1,±e2,±e3}\{a}

|u(b)| ≥ (K + 11)−1|u(a)|.

Keep walking in one of the 2d = 6 directions, we can find a chain
in a cone.

a

a + s
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Thank you!
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