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CRW

Coalescing Random Walk (CRW) on a graph G:
® |nitially one walker at each vertex of graph G.
® Each walker performs independent continuous time random
walk. Jump rate equals 1 along each edge.

® Whenever two walkers meet(collide), they merge into one
walker. This walker continues to perform random walk.
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® Each walker performs independent continuous time random
walk. Jump rate equals 1 along each edge.

® Whenever two walkers meet(collide), they merge into one
walker. This walker continues to perform random walk.

Can be defined for general Markov chain with jump rate {r,,}.
Common choices

® r.y = 1[x~ y] for general graph

® r.y = 1[x~ y]/d(x) for regular graph

Motivation: duality with the voter model.
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CRW on the complete graph

G is a complete graph (clique). r,, =1/(n—1).
L4 of walkers at time t.
Lo=n. Ly — Ly—1atrate Ly(L—1)/(n—1).
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CRW on the complete graph

G is a complete graph (clique). r,, =1/(n—1).

L4 of walkers at time t.

Lo=n Ly — Ly—1atrate Ly(Ly —1)/(n—1). Teoar: (random)
coalescence time (only one walker left)

n
Teoal = Z; i(i—1)/n
® ¢, i>1areiid. with dist. Exp(1).
° :(:—(QW is the time it takes for the n — i + 1-th coalescence to

occur (corresponding to L from jto i —1).

Related model: Kingman's coalescent. Lp = oc0. Lt — Ly — 1 at
rate Ly(L; — 1)/2.



Decay of density on the complete graph

Define the expected density (expected fraction of occupied sites)

Determine L;: the time it takes to make h coalescences

O e R )

i=n—h+1

for 1 <« h < n. Set this expression to be t, we get

n

Le=n—h~ "
e= 10 t+ 1

Thus 1
Ppm —.
|



Spatial structure

Often there is a spatial structure.
e 79
e T9.
® General vertex transitive graphs.

® Random graphs (e.g., configuration model).



Heuristic argument [van den Berg-Kesten, 2000]

Consider Z9. P, = P;(0): prob. that origin is occupied at time t.
Take 1 < A(t) < t.
dP
—d—tt = P(o and e; occupied at t)
~ Z]P’(x and y occupied at t — A(t))x
Xy
P(x + SA(t) =o0,y+ S,A(t) =e,L,x+ S5 #y+ Sﬂ,Vr < A(t))

® x and y are the location of the walkers that later come to o
and e;. S.,S’: independent random walks starting from o.

® ap(t): the probability that two time-reversed random walk
starting from o and e; don't collide by time A(t).



Results on Z¢

Assuming Py ~ Py_a(y) and a ~ a;_a(r)- The heuristic suggests
that Py &~ 1/(ta:) for moderately large t. This was known to be
true for SRW on Z9,d > 2.

Theorem (Bramson-Griffeath, 1980)
Consider the CRW on 7Z9. Ww have, as t — oo,

Pt"\J{

where 4 is the probability that a simple random walkin Z¢
starting from origin never returns to it.

log
t

3 =

t d=2
-1 4>3
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Results on Z¢

Assuming Py ~ Pi_a(y) and a ~ a;_a(r)- The heuristic suggests
that Py &~ 1/(ta:) for moderately large t. This was known to be
true for SRW on Z9,d > 2.

Theorem (Bramson-Griffeath, 1980)
Consider the CRW on 7Z9. Ww have, as t — oo,

Pt"\J{

where ~4 is the probability that a simple random walk in Z.¢
starting from origin never returns to it.

|
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By justifying previous heuristic argument, [van der Berg-Kesten,
2000] proved the same result for d > 3.
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m: stationary distribution.

Mean meeting time (the time it take for two indep. walkers to
meet)

tmeet = Eﬂ'2 (Tmeet)-

For complete graph tpeet = (n —1)/2.
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Approximation for coalescence time

m: stationary distribution.
Mean meeting time (the time it take for two indep. walkers to
meet)

tmeet = Eﬂ'2 (Tmeet)-

For complete graph tpeet = (n —1)/2.
Aldous and Fill conjectured that for finite transitive graph
(transitivity means the graph looks the same from every vertex)

)
Tcoal €i
tmeet g i(i—1)/2°

Equality holds for complete graph (replacing co by n). e; ~ Exp(1).
The factor i(i — 1)/2 counts the number of pairs
® Why exponential?



Aldous-Brown approximation

Lemma (Aldou-Brown, 1992)

For an irreducible reversible Markov chain on a finite state V' with
stationary distribution m and A C V/, if we denote the hitting time
of A by Tx and its density function w.r.t. the stationary chain by
fr,. then

Ew(tTA)>' - Ew?e-;A)7

Pr(Ta>t) —exp (—

and

1 2 = 1 Te
i (17 By ) < ) < g (1450

Consider the product chain and take A to be the diagonal set. We
have E;(Ta) = tmeet-



Second Prediction

[Oliveira, 2013] proved the Aldous-Fill conjecture under the
condition tyix <K tmeet (€quivalent to ty] < tpeet due to Hermon).
tmix and t.e quantify the rate of convergence to stationary
distribution (See Markov Chains and Mixing Times).



Second Prediction

[Oliveira, 2013] proved the Aldous-Fill conjecture under the
condition tyix <K tmeet (€quivalent to ty] < tpeet due to Hermon).
tmix and t.e quantify the rate of convergence to stationary
distribution (See Markov Chains and Mixing Times).

The time it takes to make h coalescences is about

€j 2tmeet
t ~ .
et D i(i—1)/2  n—nh

i>n—h+1
2tmeet —t=n—h= 2tmeet.
n—nh t

Hence we have another prediction

E(Lt) o n—nh 2tmeet

Pt:
n n nt




Equivalence of the two predictions

Two predictions for P;

[ )
1
P~ —
t to
where oy = 1(0)Po 1, (Tmeet > t) (Vo is a random neighbor of
o)
[ ]

2t, ,
Mt for finite graphs

PtN

They are equivalent to each other for many graphs by Kac's
formula (in continuous time) and Aldous-Brown approximation:

1

tmeet

2
~ fTA(t) = ;]P)O,VO(Tmeet > t) for I’(o) =1.



Main Results: finite graphs

Theorem (Hermon-Li-Yao-Zhang, 2021)

Two predictions holds as long as 1 < t <ty (called the Big
Bang regime since the number of particles is evolving rapidly in

this regime) for
e transitive graphs G, such that diam(G,)?> < n/log n,
e Configuration Model CM(n, D) with 3 < D < M.
If D is a constant d then CM(n, D) is random d-regular graph.



Main Results: finite graphs

Theorem (Hermon-Li-Yao-Zhang, 2021)

Two predictions holds as long as 1 < t <ty (called the Big
Bang regime since the number of particles is evolving rapidly in
this regime) for

e transitive graphs G, such that diam(G,)?> < n/log n,

e Configuration Model CM(n, D) with 3 < D < M.

If D is a constant d then CM(n, D) is random d-regular graph.

Remarks:

® For such graphs t.o. and tyeet both have order n.

® By [Tessera and Tointon, 2019], diam(G,)? < n/log n implies

trel
lim lim supsup/ ps(x, y)ds = 0.
S,

ST p—oo XY JsAte



Configuration model

Construction of the configuration model CM,(D)
® let D be a probability measure on Z,, and n € Z,..

® We take n vertices labeled 1,....n, and dy,...,d, i.i.d.
sampled from D.

® For each vertex i we attach d; half edges to it. Then we get

Gp, by uniformly matching all half edges, conditioned on
>°%_; di being even.



Configuration model

Construction of the configuration model CM,(D)
® let D be a probability measure on Z,, and n € Z,..

® We take n vertices labeled 1,....n, and dy,...,d, i.i.d.
sampled from D.

® For each vertex i we attach d; half edges to it. Then we get

Gp, by uniformly matching all half edges, conditioned on
>°%_; di being even.

The local weak limit UGT(D) of CM,(D) is a unimodular
Galton-Watson tree where

® the root has offspring distribution D

® |ater generations have offspring distribution D*:

(k+1)P(D = k + 1)

S > i)




Main Results: infinite Graphs

Theorem (Hermon-Li-Yao-Zhang, 2021)
The prediction Pi(0) ~ 1/(ta) as t — oo where

o= E(r(O)PO,VQ (Tmeet = OO))

holds for
® all transient transitive unimodular graphs, including
® Cayley graphs
® amenable graphs(=graphs with subexponential decay of return
probability)
® unimodular Galton-Watson tree UGT(D). If D is a constant d
then UGT(D) = T9.



Duality with voter model

Voter model: at rate r,,, x adopts the opinion of y.
A site is occupied in CRW < the opinion is not lost in VM.

t=1 @ s=0 () a O b

=0 @ ® -1 0- O a

Figure: Left panel: CRW; right panel: voter model



Proof Sketch of [Bramson-Griffeath,1980]

ny: # walkers that end up at origin at time t.
n¢: the voter model starting from different opinions at every site.
Np = {x : n¢(x) = ne(0)}. [Kelly, 1977] gives

P(Nt =Jj) =/P(n: =j),j > 0,( i.e., size-biased verion of n;)

— P(n _ -1y — N, - -1
P =P(n > 0)=EN; ) =E <E(Nt)> E(N,) L.

E(N,) is equal to E(Rz) where R. is the range of a random walk.
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ny: # walkers that end up at origin at time t.
n¢: the voter model starting from different opinions at every site.
Np = {x : n¢(x) = ne(0)}. [Kelly, 1977] gives

P(Nt =Jj) =/P(n: =j),j > 0,( i.e., size-biased verion of n;)

— P(n _ -1y — N, - -1
P =P(n > 0)=EN; ) =E <E(Nt)> E(N,) L.

E(N,) is equal to E(Rz) where R. is the range of a random walk.

Theorem (Sawyer, 1979)
Consider CRW on Z9,d > 2.

~ k

|
lim E | { = @
t—00 E(N;) 2




Proof Sketch of [Bramson-Griffeath,1980]-cont’d

A remark from [Bramson-Griffeath,1980]: Sawyer's theorem comes
tantalizingly close to determining the asymptotics of P;.
Gap: the function f(x) = x~! is unbounded near x = 0.



Proof Sketch of [Bramson-Griffeath,1980]-cont’d

A remark from [Bramson-Griffeath,1980]: Sawyer's theorem comes
tantalizingly close to determining the asymptotics of P;.
Gap: the function f(x) = x~! is unbounded near x = 0.

Theorem (Bramson-Griffeath, 1980)

Pt:{OCO%t) =2

o () d>3.

Lemma (Bramson-Griffeath, 1980)
Sawyer’s Theorem+upper bound on P; gives the asymptotics of P;.

Basically, the upper bound on P; implies the Nt/E(Nt) doesn't
have too much mass near 0.



Transform to coalescence probability

Let N; be the number of walkers that collide with the walker
starting at U. Ny = 1.

N; = Z 1[the particle starting at x coalesced with U by time t]

<E(A/I\t/t)>_1] '

(A graph rooted at a uniform vertex is unimodular.)

P =E(N; ') = [E(N:)]7'E




Transform to coalescence probability

Let N; be the number of walkers that collide with the walker
starting at U. Ny = 1.

N; = Z 1[the particle starting at x coalesced with U by time t]

X
(sth)
E(N;) '
(A graph rooted at a uniform vertex is unimodular.)
C: coalescence time for k+1 walkers.

1 -
E(NS) = Y. EQAX(0) =x.¥1<i<k+1]
Xl?"'7Xk+1eV

ACKG, - Xirn) < )
= nkPﬂ.®k+1((C(X1, . ,Xk+1) < t),

P =E(N; ') = [E(N:)]7'E




Ingredients of the proof

Using the machinery in the proof of Z9 case by
Braomson-Griffeath, it suffices to

® give an upper bound of P; that differs from the ‘true value' of
P: by a multiplicative constant,

® show that the coalescence probability

k
t
P i1(C(X1, ..., Xep1) < t) ~ (k+1)! ( ) :
tmeet

Another indication of mean field! B-G proof heavily relies on the
specific geometric structure of Z9.



Solution

® For the first part, we show that for any t > 0,

Cinfxec fotfs(x, x)ds <P < SUPxeG fottps(x, x)ds‘

where ¢ and C are universal constants.

® For the second part, we use the reversibility of random walk to
transform collision probability to non-colliding probability. If
two forward paths collide at t then (after reversing time) the
backward paths don't collide in [0, t].



We want to estimate P ox+1(C(X1, ..., Xkt1) < t).

Consider the case k = 1. The probability that X; and X collide
within time interval [t, t + dt] is about

ZZIP’ (X1(t) = u, X2 jumps from u to v in [t, t + dt])

~2ZIP> (X1(t) = u, Xa(t) = v, no collisions in [0, t])r, ,dt

~2ZIP’ 71(0) = u)r(u)x

> L P(12(0) = V)Pu(nls) # 72(s).¥0 < 5 < ),

where 71 and 7 are the time-reversals of X1, X on [0, t].




Collision Pattern and Branching Structure

We can imagine 3 is the parent of v and interpret the term

ru,v/r(u) as the probability of the particle at v giving birth to a
particle at location v.

Can be generalized to k > 3 paths.
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If two walkers don't collide in time O(t), then they will also not
collide before time t.

Lemma
For any x # y and 0 < s < t, the probability that two walkers
starting from x and y collide between time s and t is bounded by

max; fozs ps(z, z)ds N 8t

—1
s “Vn
min,, f025 Ps(Z, Z)dS n ( max)

2exp(—s/trel)

max = Maxy r(x). The error is small for t,q) < s < t <K n.



Open Question

For finite graphs our results (the expectation of the number of
occupied sites) can be upgraded to a weak law of large numbers
using negative correlation

P(both x and y occupied at t) < P(x occupied at t)P(y occupied at t).

What about fluctuations? Do we have a Gaussian limit as in the
mean field case ([Aldous, 1999])?
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