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Large Independent sets
Finding large independent sets in d-random regular 
graphs.

Largest IS is roughly 
(2+𝑜(1)) log 𝑑

𝑑
n.

Lauer and Wormald ’07 give a local algorithm that finds 

an IS of size 
(1+𝑜(1)) log 𝑑

𝑑
n

Iteratively pick vertices with probability 𝑝 and add 
them to the set if possible.

Gap of factor of 2.



Large Independent sets
Hatami, Lovasz, and Szegedy asked if there were local 

algorithms up to 
(2−𝜖) log 𝑑

𝑑

No for IS up to 
(1+

1

√2
𝑜(1)) log 𝑑

𝑑
𝑛 Gamarnik, Sudan ‘14

Independent sets larger than 
(1+𝜖) log 𝑑

𝑑
𝑛 come in well 

separated clusters.

No for IS larger than 
(1+𝜖) log 𝑑

𝑑
𝑛 Rahman, Virag ‘17 



Factors of IID
Goal: reconstruct 𝜎: 𝑉 → 𝑋 e.g. colouring, matching, Ising
from IID random variables 𝑈𝑥 𝑥∈𝑉 .
On a transitive graph e.g. ℤ𝑑 , 𝕋𝑑 with randomness a FIID is a 
measurable function

𝑓: 0,1 𝑉 → 𝑋, 𝜎 𝑥 = 𝑓 𝜏𝑥 𝑈𝑦 ,

where 𝜏𝑥 is the shift operator 𝜏𝑥 𝑈 𝑧 = 𝑈𝑧−𝑥.

Note that there is no assumption on the radius but by 
measurability it can be approximated by bounded radius.

On ℤ𝑑 being a factor of IID is equivalent to being isomorphic 
to a Bernoulli shift. 



Factors of IID

Colourings of Planar Graphs
Angel, Benjamini, Gurel-Gurevich, 

Meyerovitch, Peled ’12

Timar ‘11

Gaussian Wave function FIID
Thresholding leads to density 0.43 IS 
on 3-regular tree
Csóka, Gerencsér, Harangi, Virág ‘15

Matchings
Holroyd, Pemantle, Peres, 
Schramm ‘09
Non-amenable graphs -

Lyons Nazarov ’11

Divide and Colour
Partition vertices and colour components 
independently  e.g. Ising, Potts, Voter
Voter stationary distribution S., Zhang ‘19

Swart ‘17

Gibbs measures 
with spatial mixing
Spinka ‘20.



Ising model on trees (Free measure)

A random assignment           
𝜎 ∈ −1,+1 𝑉

with distribution

ℙ 𝜎 =
1

𝑍
exp(𝛽෍

𝑢∼𝑣

𝜎𝑢𝜎𝑣)

Alternatively: a broadcast 
model where a vertex is equal 
to its parent with probability

1

2
+
1

2
tanh 𝛽

𝐶𝑜𝑣 𝜎𝑢, 𝜎𝑣 = tanh𝛽 𝑑(𝑢,𝑣)

+1

+1

+1

-1

+1 +1 -1

+1 +1+1-1+1 +1 -1-1

FK model: 𝜉 ∈ 0,1 𝐸

ℙ 𝜉 =
1

𝑍
𝑦Σ𝜉𝑢2#𝐶(𝜉)

where 𝐶 𝜉 is number of 
connected components.
On tree percolation w.p.

𝑝 = tanh𝛽



Phase Transitions (Uniqueness)
Uniqueness Threshold: tanh𝛽 = 𝑑−1

The critical value for a distant boundary to effect the root

lim
ℓ
ℙ 𝜎𝜌 = + 𝜎𝑆ℓ ≡ + = 1/2 ⟺ tanh𝛽 ≤ 𝑑−1

For larger 𝛽 there exist multiple Gibbs measures (extensions 
to infinite graph) such as the plus measure. 

High Temperature: tanh𝛽 ≤ 𝑑−1

FK – model 𝑝 ≤ 𝑑−1 so all components are finite. 
There exists a FIID.

++++ +

+ 𝜎𝜌

𝜎𝑆ℓ

ℓ



Phase Transitions (Reconstruction)
Reconstruction/Extremeality Threshold: tanh𝛽 = 𝑑−1/2

Critical value for distant vertices to affect the root.

lim
ℓ
ℙ 𝜎𝜌 = + 𝜎𝑆ℓ = 1/2 𝑎. 𝑠. ⟺ tanh𝛽 ≤ 𝑑−1/2

Low Temperature tanh𝛽 > 𝑑−1/2

Distant spins contain information about the root,

𝑉𝑎𝑟 𝑑tanh𝛽 −ℓΣ𝑢∈𝑆ℓ 𝜎𝑢 → 𝐶

lim
ℓ
𝐶𝑜𝑣 𝜎𝜌, 𝑑tanh𝛽

−ℓΣ𝑢∈𝑆ℓ 𝜎𝑢 > 0

Is FIID possible with such long range dependencies?

+−++ −

+

ℓ



No FIID for low temperature.
Suppose 𝜎𝑥 = 𝑓(𝜏𝑥 𝑈 )
There exists a finite range factor 𝑔 such that 
𝜎𝑥
′ = 𝑔(𝜏𝑥 𝑈 ) ∈ −1,1 , ℙ 𝜎𝑥

′ ≠ 𝜎𝑥 ≤ 𝜖, 𝔼 𝜎𝑥
′ = 0

Then we have

lim
ℓ
𝐶𝑜𝑣 𝜎𝜌

′ , 𝑑tanh𝛽 −ℓΣ𝑢∈𝑆ℓ 𝜎𝑢 > 0

By symmetry 
𝐶𝑜𝑣 𝜎𝜌

′ , 𝑑tanh𝛽 −ℓΣ𝑢∈𝑆ℓ 𝜎𝑢 = 𝐶𝑜𝑣 𝜎𝜌, 𝑑tanh𝛽
−ℓΣ𝑢∈𝑆ℓ 𝜎𝑢

′

But

𝑉𝑎𝑟 𝑑tanh𝛽 −ℓΣ𝑢∈𝑆ℓ 𝜎𝑢
′ ≤ 𝑑tanh𝛽 −2ℓ ∗ 𝐶𝑑ℓ → 0

since 𝜎𝑢
′ are uncorrelated at large distances.



Intermediate temperatures?
Lyons ‘14 asked, when tanh 𝛽 ∈ (𝑑−1, 𝑑−1/2) is there a factor of IID?

Attempt 1: In the FK model, the components are infinite – no 
translation invariant way to assign the colours.

Attempt 2: Peres suggest the following:  
Construct 𝜎 using the Glauber Dynamics Markov chain.

Each vertex has rate 1 Poisson clock
Update it according to stationary distribution.

Use coupling from the past i.e. run for 𝑡 ∈ (−∞. . 0]
Different initial condition such as + lead to different  
Gibbs measures.
Suggests IID initial configuration.

Simulations/heuristics suggest it does not converge almost surely.



Intermediate temperatures?
Attempt 3:  Assign the vertices in order.

There’s no T.I. ordering of all the vertices.
But we can assign them times 𝑇𝑣 ∈ 0,1 IID plus 𝑈𝑣 ∈ [0,1]
Set 𝜎𝑣 = 1 if 𝑈𝑣 ≤ ℙ[𝜎𝑣 = 1 ∣ 𝜎𝑢 𝑢:𝑇𝑢<𝑇𝑣]

Problem: There exist multiple solution given 𝑈𝑣, 𝑇𝑣 𝑣∈𝑉.
Difficult to control the effect of far away choices.

Attempt 4: Reveal noisy version of 𝜎𝑣, 𝐻𝑣,1, 𝐻𝑣,2, … at times 𝑇𝑣,𝑖
where ℙ 𝜎𝑣 = 𝐻𝑣,𝑖 = 1/2 + 𝛼.

Then Xv(n): = Σ𝑖=1
𝑛 𝐻𝑣,𝑖 ≈ 𝑁(2𝛼 𝜎𝑣 𝑛, 𝑛).

Still requires hard choices - idea take 𝛼 → 0. Asymptotically Xv(n) is 
Brownian motion with drift.



FIID Construction

We will build a process 𝑋𝑡(𝑣) = 𝜎𝑣𝑡 + 𝐵𝑡(𝑣) where 𝐵𝑡(𝑣) are 
independent Brownian motions.

Easy to construct if we already know 𝜎𝑣 (but we don’t).

Easier example:  single vertex 𝑣.  Then if ℱ𝑡 is the filtration 
generated by 𝑋𝑡 then

𝔼 𝜎𝑣 ℱ𝑡 = tanh𝑋𝑡(𝑣)
we have can construct it by

𝑑𝑋𝑡 𝑣 = tanh𝑋𝑡(𝑣) 𝑑𝑡 + 𝑑𝐵𝑡(𝑣)
The stochastic differential equation has a unique strong solution, 
that is we can construct 𝑋𝑡 𝑣 given 𝐵𝑡(𝑣).



FIID Construction

For all 𝑣 we want to construct 𝑋𝑣(𝑡) simultaneously.

The Ising model with external field {ℎ𝑣} is given by

ℙℎ 𝜎 =
1

𝑍
exp(𝛽෍

𝑢∼𝑣

𝜎𝑢𝜎𝑣 +෍

𝑣

ℎ𝑣𝜎𝑣)

Then by Bayes rule with ℱ𝑡 = 𝑋𝑠 𝑣 𝑠≤ 𝑡,𝑣∈𝑇

𝔼 𝜎𝑣 ℱ𝑡 = 𝔼𝑋𝑡[𝜎𝑣]

And 𝑋𝑡(𝑣) is a solution of 
𝑑𝑋𝑡 𝑣 = 𝔼𝑋𝑡 𝜎𝑣 dt + 𝑑𝐵𝑡(𝑣)

This is an infinite dimensional SDE.
It has multiple strong solutions.

Theorem (Nam, S., Z.) When tanh 𝛽 ∈ 𝑑−1, 𝛿𝑑−
1

2 there is a strong 
solution that gives a FIID for the free Ising model.



FIID Construction

For the infinite dimensional SDE
𝑑𝑋𝑡 𝑣 = 𝔼𝑋𝑡 𝜎𝑣 dt + 𝑑𝐵𝑡(𝑣)

We now construct a strong solution that is translation invariant; i.e., 
define a translation invariant function ℱ: 𝐵 ↦ 𝑋.

𝜌
𝜌′

Theorem (Nam, S., Z.)

When tanh 𝛽 ∈ 𝑑−1, 𝛿𝑑−
1

2 , almost surely as 
𝑅 → ∞

𝑋𝑡
𝑅 𝑣 → 𝑋𝑡 𝑣

And the limit 𝑋𝑡 𝑣 is independent of the choice 
of 𝜌.

A step back: on a finite graph, this SDE has a unique strong solution. 
On a ball of radius 𝑅 around the root 𝜌 (𝑇𝑅) we build the SDE

𝑑𝑋𝑡
𝑅 𝑣 = 𝔼𝑋𝑡𝑅

𝜎𝑣 dt + 𝑑𝐵𝑡 𝑣 ∀𝑣 ∈ 𝑇𝑅



Comparing 𝑋𝑡
𝑅 and 𝑋𝑡

𝑅+1

To show convergence, bound the difference between 𝑋𝑡
𝑅 and 𝑋𝑡

𝑅+1 .
Again we take a continuous approach.

For 𝛾 ∈ [0, 𝛽] define

ℙℎ,𝛾 𝜎 =
1

𝑍
exp(𝛽 ෍

𝑢∼𝑣
𝑢,𝑣∈𝑇𝑅

𝜎𝑢𝜎𝑣 + 𝛾 ෍
𝑢∼𝑣

𝑢∈𝑇𝑅,𝑣∈𝑇𝑅+1

𝜎𝑢𝜎𝑣 + ෍

𝑣∈𝑇𝑅+1

ℎ𝑣𝜎𝑣)

In words, it is Ising model on 𝑇𝑅+1 with external field ℎ (ℙℎ), and 
the inverse temperature on leaves is 𝛾 instead of 𝛽.  

By varying 𝛾 we interpolate:

𝑋𝑡
𝑅,0 = 𝑋𝑡

𝑅 and 𝑋𝑡
𝑅,𝛽

= 𝑋𝑡
𝑅+1

Let 𝑋𝑡
𝑅,𝛾

be the solution of

𝑑𝑋𝑡
𝑅,𝛾

𝑣 = 𝔼
𝑋𝑡
𝑅,𝛾

,𝛾
𝜎𝑣 dt + 𝑑𝐵𝑡(𝑣)

𝛾

𝛽



Comparing 𝑋𝑡
𝑅 and 𝑋𝑡

𝑅+1

Denote 𝐻𝑡
𝑅,𝛾

=
𝑑

𝑑𝛾
𝑋𝑡
𝑅,𝛾

.

From 𝑑𝑋𝑡
𝑅,𝛾

𝑣 = 𝔼
𝑋𝑡
𝑅,𝛾

,𝛾
𝜎𝑣 dt + 𝑑𝐵𝑡 𝑣 we compute that

𝑑

𝑑𝑡
𝐻𝑡
𝑅,𝛾

𝑣 = 𝜕𝛾𝔼𝑋𝑡
𝑅,𝛾

,𝛾
𝜎𝑣 = 𝑀𝑡𝐻𝑡

𝑅,𝛾
𝑣 + 𝑁𝑡(𝑣)

where 𝑀𝑡 is a 𝑇𝑅+1 × 𝑇𝑅+1 matrix:
𝑀𝑡(𝑢, 𝑣) = 𝐶𝑜𝑣

𝑋𝑡
𝑅,𝛾 𝜎𝑢, 𝜎𝑣 ,  and

𝑁𝑡 𝑣 = σ𝑢∈𝑇𝑅,𝑢∼𝑢
′,𝑢′∈𝜕𝑇𝑅+1

𝐶𝑜𝑣
𝑋𝑡
𝑅,𝛾 𝜎𝑣 , 𝜎𝑢𝜎𝑢′

Thus we can write

𝐻𝑡
𝑅,𝛾

= ෍

𝑘=1

∞

න
0<𝑡1<⋯<𝑡𝑘<𝑡

𝑀𝑡𝑘 …𝑀𝑡2𝑁𝑡1 𝑑𝑡1…𝑑𝑡𝑘

𝑢

𝑢′



Comparing 𝑋𝑡
𝑅 and 𝑋𝑡

𝑅+1

To bound 𝑋𝑡
𝑅 − 𝑋𝑡

𝑅+1, we study the second moment 𝔼 𝐻𝑡(𝑣)
2 .

From  𝐻𝑡 = σ𝑘=1
∞ 𝑡1<⋯<𝑡𝑘<𝑡>0׬

𝑀𝑡𝑘 …𝑀𝑡2𝑁𝑡1 𝑑𝑡1…𝑑𝑡𝑘 , 

we can write 𝐻𝑡(𝑣)
2 as sum and integral of terms like

𝐶𝑜𝑣𝑋𝑡0 𝜎𝑣1 , 𝜎𝑣0𝜎𝑣0′ 𝐶𝑜𝑣𝑋𝑡𝑘
𝜎𝑣𝑘 , 𝜎𝑣𝑘+1𝜎𝑣𝑘+1

′

×ෑ

𝑖=1

𝑘−1

𝐶𝑜𝑣𝑋𝑡𝑖
𝜎𝑣𝑖 , 𝜎𝑣𝑖+1

where 𝑣 ∈ 𝑣0, … , 𝑣𝑘+1 ,
and 𝑣0, 𝑣𝑘+1 ∈ 𝑇𝑅, 𝑣0 ∼ 𝑣0

′ , 𝑣𝑘+1 ∼ 𝑣𝑘+1
′ , and 𝑣0

′ , 𝑣𝑘+1
′ ∈ 𝜕𝑇𝑅+1

𝑣0

𝑣0
′

𝑣1

𝑣2 = 𝑣

𝑣3

𝑣3
′



Comparing 𝑋𝑡
𝑅 and 𝑋𝑡

𝑅+1

𝑣0

𝑣0
′

𝑣1

𝑣2

𝑣3

𝑣3
′

Given 𝑣, we wish the sum (and integral) of all such terms 

decay fast in 𝑅 (want σ𝑅 𝑋𝑡
𝑅(𝑣) − 𝑋𝑡

𝑅+1(𝑣) < ∞ a.s.).

𝐶𝑜𝑣𝑋𝑡0 𝜎𝑣1 , 𝜎𝑣0𝜎𝑣0′ 𝐶𝑜𝑣𝑋𝑡𝑘
𝜎𝑣𝑘 , 𝜎𝑣𝑘+1𝜎𝑣𝑘+1

′ ෑ

𝑖=1

𝑘−1

𝐶𝑜𝑣𝑋𝑡𝑖
𝜎𝑣𝑖 , 𝜎𝑣𝑖+1

where 𝑣 ∈ 𝑣0, … , 𝑣𝑘+1 , and 𝑣0, 𝑣𝑘+1 ∈ 𝑇𝑅 , 𝑣0 ∼ 𝑣0
′ , 𝑣𝑘+1 ∼ 𝑣𝑘+1

′ , and 𝑣0
′ , 𝑣𝑘+1

′ ∈ 𝜕𝑇𝑅+1

A direct bound: in a tree, external fields 
only decrease covariances:

0 ≤ 𝐶𝑜𝑣ℎ 𝜎𝑣, 𝜎𝑢 ≤ 𝐶𝑜𝑣0 𝜎𝑣 , 𝜎𝑢
= tanh𝛽 dist 𝑢,𝑣 < 𝑑−dist 𝑢,𝑣 /2

(recall tanh𝛽 < 𝛿𝑑−
1

2).

A bound of tanh𝛽 dist 𝑣0,𝑣1 +⋯+dist 𝑣𝑘,𝑣𝑘+1 is not enough!

e.g. σ𝑣0,𝑣2∈𝜕𝑇𝑅
𝑑−(dist 𝑣0,𝑣 +dist 𝑣,𝑣2 )/2 ≈ 𝑑𝑅 .



Comparing 𝑋𝑡
𝑅 and 𝑋𝑡

𝑅+1

𝑣0

𝑣0
′

𝑣1

𝑣2

𝑣3

𝑣3
′

𝐶𝑜𝑣𝑋𝑡0 𝜎𝑣1 , 𝜎𝑣0𝜎𝑣0′ 𝐶𝑜𝑣𝑋𝑡𝑘
𝜎𝑣𝑘 , 𝜎𝑣𝑘+1𝜎𝑣𝑘+1

′ ෑ

𝑖=1

𝑘−1

𝐶𝑜𝑣𝑋𝑡𝑖
𝜎𝑣𝑖 , 𝜎𝑣𝑖+1

where 𝑣 ∈ 𝑣0, … , 𝑣𝑘+1 , and 𝑣0, 𝑣𝑘+1 ∈ 𝑇𝑅 , 𝑣0 ∼ 𝑣0
′ , 𝑣𝑘+1 ∼ 𝑣𝑘+1

′ , and 𝑣0
′ , 𝑣𝑘+1

′ ∈ 𝜕𝑇𝑅+1

Suffices to have one extra factor: 
1

𝑘!
tanh𝛽 dist 𝑣0,𝑣1 +⋯+dist 𝑣𝑘,𝑣𝑘+1 +dist 𝑣𝑘+1,𝑣0

Each tanh𝛽 𝐿 corresponds to a walk 
starting and ending at 𝑣 with length 𝐿; 

A bound of tanh𝛽 dist 𝑣0,𝑣1 +⋯+dist 𝑣𝑘,𝑣𝑘+1 is not enough!

e.g. σ𝑣0,𝑣2∈𝜕𝑇𝑅+1
𝑑−(dist 𝑣0,𝑣 +dist 𝑣,𝑣2 )/2 ≈ 𝑑𝑅 .

Or the prob of a random walk starting from 𝑣. At each step, with 
prob ½ moves farther from 𝑣, and prob ½ moves closer to 𝑣.

there are ≈ 𝑑 + 𝑜(1) 𝐿/2 such walks.



Estimating 𝔼 𝐻𝑡
𝑅,𝛾
(𝑣)

2

𝑣0

𝑣0
′

𝑣1

𝑣2

𝑣3

𝑣3
′

𝔼 𝐶𝑜𝑣
𝑋𝑡0
𝑅,𝛾 𝜎𝑣1 , 𝜎𝑣0𝜎𝑣0′ 𝐶𝑜𝑣

𝑋𝑡𝑘
𝑅,𝛾 𝜎𝑣𝑘 , 𝜎𝑣𝑘+1𝜎𝑣𝑘+1

′ ෑ

𝑖=1

𝑘−1

𝐶𝑜𝑣
𝑋𝑡𝑖
𝑅,𝛾 𝜎𝑣𝑖 , 𝜎𝑣𝑖+1

< 𝐶 tanh𝛽 dist 𝑣0,𝑣1 +⋯+dist 𝑣𝑘,𝑣𝑘+1 +dist 𝑣𝑘+1,𝑣0

Actually we can write

𝐶𝑜𝑣𝑋𝑡 𝜎𝑣 , 𝜎𝑢𝜎𝑢′ =
sinh 𝑋𝑡 𝑢′ tanh 𝛽 dist 𝑢′,𝑣

2 ത𝑍𝑋𝑡(𝑢
′,𝑣)

2

𝐶𝑜𝑣𝑋𝑡 𝜎𝑢, 𝜎𝑣 =
tanh 𝛽 dist 𝑢,𝑣

ത𝑍𝑋𝑡(𝑢,𝑣)
2

where ҧ𝑍𝑋𝑡 𝑢, 𝑣 =
𝑍𝑋𝑡(𝑢,𝑣)

𝑍0(𝑢,𝑣)
≥ 1.

Need: 𝔼
sinh 𝑋𝑡0 𝑣0 sinh 𝑋𝑡𝑘 𝑣𝑘+1

Π𝑖 ത𝑍𝑋𝑡𝑖
(𝑣𝑖,𝑣𝑖+1)

2 < 𝐶 tanh𝛽 dist 𝑣𝑘+1,𝑣0



Estimating 𝔼 𝐻𝑡
𝑅,𝛾
(𝑣)

2

𝑣0 𝑣𝑘+1

Need: 𝔼
sinh 𝑋𝑡0 𝑣0 sinh 𝑋𝑡𝑘 𝑣𝑘+1

Π𝑖 ത𝑍𝑋𝑡𝑖
(𝑣𝑖,𝑣𝑖+1)

2 < 𝐶 tanh𝛽 dist 𝑣𝑘+1,𝑣0

The LHS is ‘like’ 𝔼 𝜎𝑣0𝜎𝑣𝑘+1 , which equals tanh𝛽 dist 𝑣𝑘+1,𝑣0 .

However, the weights make it hard to compute directly.

Solution: reveal the field gradually

Recall how we compute 𝔼 𝜎𝑣0𝜎𝑣𝑘+1 : one way is to take the path 

from 𝑣0 to 𝑣𝑘+1, and it is a Markov chain.



Estimating 𝔼 𝐻𝑡
𝑅,𝛾
(𝑣)

2

𝑣0 𝑣𝑘+1

For 0 ≤ ℓ ≤ dist 𝑣𝑘+1, 𝑣0 , construct measure 𝜇±,ℓ :

𝑑𝜇±,ℓ =
𝐼(±𝑋𝑡0 𝑣0 > 0) sinh 𝑋𝑡0 𝑣0

Π𝑖 ҧ𝑍𝑋𝑡𝑖
(ℓ)

(𝑣𝑖 , 𝑣𝑖+1)
2 𝑑𝜇

Where ҧ𝑍𝑋𝑡𝑖
(ℓ)

is  ҧ𝑍𝑋𝑡𝑖
restricted to 𝐺 ℓ . 

𝐺 ℓ

We couple 𝜇+,ℓ with 𝜇−,ℓ inductively (in ℓ), minimizing 

𝔼𝜇+,ℓ sinh 𝑋𝑡𝑘 𝑣𝑘+1 − 𝔼𝜇−,ℓ sinh 𝑋𝑡𝑘 𝑣𝑘+1

𝔼
sinh 𝑋𝑡0 𝑣0 sinh 𝑋𝑡𝑘 𝑣𝑘+1

Π𝑖 ҧ𝑍𝑋𝑡𝑖
(𝑣𝑖 , 𝑣𝑖+1)

2



Open Problems

Some directly related questions:

1) Extend the analysis to full intermediate regime?

The reason we require tanh 𝛽 ∈ (𝑑−1, 𝛿𝑑−1/2) instead of 
tanh 𝛽 ∈ (𝑑−1, 𝑑−1/2) is technical, rather than intrinsic.

2) Find a simpler FIID?

Is there a more direct construction, avoiding the computations?

3) What is the relationship between FIIDs and 
reconstruction/extremality?



1RSB models

Several models (colourings, large independent sets, k-sat) are in the 
one step replica symmetry breaking universality class.

Thresholds Colouring IS/Hardcore

Clustering 𝑑 log 𝑑 𝛼 =
log 𝑑

𝑑

Algorithms 𝑑 log 𝑑 𝛼 =
log 𝑑

𝑑

Colourability/ 2𝑑 log 𝑑 𝛼 =
2log 𝑑

𝑑

MAX IS



Full RSB models

Example: Sherrington-Kirkpatrick model, antiferromagnetic Ising
model.

For spin glasses Subag ‘18, Montanari ’19, El Alaoui, Montanari
Selke ’20 gave algorithms that give (1 − 𝜖) approximation to the 
ground state.

Should also apply to anti-ferromagnetic Ising model:

Max Cut = n
𝑑

2
+ 𝑑 𝑃∗ + 𝑜 𝑑

[Dembo, Montanari, Sen]
The Gibbs measure is not locally optimal.



Thank you for listening


