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Local Functions
Two perspectives:

Local functions for optimization
Factors of IID - Ergodic Theory



Large Independent sets ]

Finding large independent sets in d-random regular
graphs.

Largest IS is roughly (2+0(1;) log d,,.

Lauer and Wormald '07 give a local algorithm that finds
(1+0(1)) log drl

an IS of size

[teratively pick vertices with probability p and add
them to the set if possible.

Gap of factor of 2.



Large Independent sets
Hatami, Lovasz, and Szegedy asked if there were local

algorithms up to (Z_E)Cllog 4
)
B
OQ@ “\’
(1+io(1)) log d
No for IS up to V2 - n Gamarnik, Sudan ‘14

(1+¢€) logd

Independent sets larger than n come in well

separated clusters.

(1+¢€) logd

No for IS larger than n Rahman, Virag ‘17



Factors of IID ]

Goal: reconstruct o: V' — X e.g. colouring, matching, Ising
from IID random variables {U, },cy.
On a transitive graph e.g. Z¢, T with randomness a FIID is a
measurable function

f:001]" =X, o) = f(r{Uy}),

where 1, is the shift operator (7,{U}), = U,_,.

Note that there is no assumption on the radius but by
measurability it can be approximated by bounded radius.

On Z? being a factor of IID is equivalent to being isomorphic
to a Bernoulli shift.



Factors of IID
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Gaussian Wave function FIID
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Ising model on trees (Free measure)

A random assignment
ge{-1+1}
with distribution

1
Plo] =~ exp(B ) 0u0)

u~v
Alternatively: a broadcast +1 +1-1 +1+1 +1-1 -1
model where a vertex is equal ~FKmodel: ¢ € {0,1}"
to its parent with probability P[¢] = % yZ5u#C(E)
1 + ltanh B where C(¢) is number of
2 2 connected components.

Cov(oy,, 0,) = (tanh f8 )AWY)  On tree percolation w.p.
p = tanh



Phase Transitions (Uniqueness) ]

+ o,

Uniqueness Threshold: tanh f = d~?! }
¢

OSe++++ +
The critical value for a distant boundary to effect the root
li{I)nIP[Jp = +| 05, = +] =1/2 o tanhpf <d?!
For larger [ there exist multiple Gibbs measures (extensions
to infinite graph) such as the plus measure.

High Temperature: tanh f < d~1!
FK - model p < d~! so all components are finite.
There exists a FIID.




[Phase Transitions (Reconstruction) ]

Reconstruction/Extremeality Threshold: tanh § = d~1/2
Critical value for distant vertices to affect the root.

li{m Plo, =+|os,| =1/2a.s. & tanhp < d~/?
_|_

Low Temperature tanh 8 > d~1/? }f’
Distant spins contain information about the root, *—++-

Var ((dtanhﬁ)‘{)ZuES{, au) - C
lign Cov(ap, (dtanhﬁ)‘quES{, au) > ()

[s FIID possible with such long range dependencies?




No FIID for low temperature. ]

Suppose gy = f(7,({U}))
There exists a finite range factor g such that

ox = 9(1,(1U}) €{-11},  Ploy #oyx] <€ Elox] =0

Then we have
lim Cov(o,, (dtanhB) *Zyes, 0, ) >0
By symmetry
Cov(a[;, (dtanhﬁ)‘{)ZuES{, au) = Cov(ap, (dtanh,B)‘{)ZuES{, O'{L)
But
Var((dtanh,b’)‘{)zues{, 0,,) < (dtanhB)™%% = Cd? - 0
since g,, are uncorrelated at large distances.



Intermediate temperatures?
Lyons 14 asked, when tanh 8 € (d~1,d~1/?) is there a factor of 1ID?

Attempt 1: In the FK model, the components are infinite - no
translation invariant way to assign the colours.

Attempt 2: Peres suggest the following:
Construct o using the Glauber Dynamics Markov chain.
Each vertex has rate 1 Poisson clock
Update it according to stationary distribution.
Use coupling from the pasti.e.run fort € (—co..0]
Different initial condition such as + lead to different
Gibbs measures.
Suggests IID initial configuration.
Simulations/heuristics suggest it does not converge almost surely.




Intermediate temperatures?

AttemDPt 3: Assign the vertices in order.
There’s no T.I. ordering of all the vertices.
But we can assign them times T}, € [0,1] IID plus U,, € [0,1]
Seto, =1itU, < Plo, =11 {O-u}u:Tu<Tv]
Problem: There exist multiple solution given {U,, T}, }, ey -
Difficult to control the effect of far away choices.

Attempt 4: Reveal noisy version of 0, H;, 1, H,, 5, ... at times T, ;
where IP[G,, = Hv,i] =1/2 + a.

Then X,(n):= 2L H,; = N(2a g, n,n).

Still requires hard choices - idea take a — 0. Asymptotically X, (n) is
Brownian motion with drift.



FIID Construction

We will build a process X;(v) = o,t + B;(v) where B;(v) are
independent Brownian motions.

Easy to construct if we already know g, (but we don't).

Easier example: single vertex v. Then if F; is the filtration
generated by X; then
E| g, | F; | = tanh X;(v)
we have can construct it by
dX;(v) = tanh X;(v) dt + dB;(v)
The stochastic differential equation has a unique strong solution,
that is we can construct X;(v) given B (v).



FIID Construction

For all v we want to construct X,,(t) simultaneously.

The Ising model with external field {h,,} is given by

1
Pplo] = Zexp(lg Z 0y 0y t Z hy,0y)

u~v v

Then by Bayes rule with F; = {X;(v)}s< ¢ ver
Elo, | Ft] = IEXt[O-v]
And X;(v) is a solution of
dX:(v) = Ex,|oy,]dt + dB:(v)
This is an infinite dimensional SDE.
[t has multiple strong solutions.

1
Theorem (Nam, S., Z.) When tanh € (d‘l, 5d_5) there is a strong
solution that gives a FIID for the free Ising model.




FIID Construction

For the infinite dimensional SDE

dXt(U) — ]EXt [O-v]dt + dBt(v)
We now construct a strong solution that is translation invariant; i.e.,
define a translation invariant function F: B » X.

A step back: on a finite graph, this SDE has a unique strong solution.
On a ball of radius R around the root p (Ty) we build the SDE
dXE(v) = IEng lo,]dt + dB;(v) Vv € Tp

Theorem (Nam, S., Z.) e
When tanh f € (d‘l, od 2), almost surely as R
R — o Y

XzB (v) - X (v)
And the limit X, (v) is independent of the choice
of p.



Comparing X;* and Xf+1

To show convergence, bound the difference between XX and X2*1.

Again we take a continuous approach.
Fory € [0, 5] define

1
IP)h,y[O_] = Zexp(ﬁ z 0y0y +Y z 0y 0y t z hy,oy)

U~V U~v V€T Ra1
u,veTR UETRVETR+1

In words, it is Ising model on Ty, with external field h (IP;,), and
the inverse temperature on leaves is y instead of £5.

Let Xf’y be the solution of
dx;"’ (v) = Eyry ,loy]dt + dB, (v)

By varying y we interpolate:
XRO = xR and x*F = xF+1 y



Comparing X;* and Xf+1

Ry _ d R,
Denote H, ¥ = —X,"".
dy

From de Y(v) = E ry y[av]dt + dB;(v) we compute that
t )

d .,R, )
2o He @) = 0yEyry loy] = MH (v) + Ny (v)

where M; is a Tp,1 X Tp1 matrix:
M;(u,v) = Cov,ry(0gy, 0y), and
t

Nt (U) = ZueTR,u~u’,u’EBTR+1 COUXE,)/ (Uv, Ou O'ul)
u

Thus we can write

ul

(0.0)
R;
HY = z f Mi, ..My N, dt; ...dt,
=1 Y 0<ty<--<tp<t



Comparing X and X;*1

To bound X — Xf*1, we study the second moment E[(H,(v))?].

From H, = Y 1f0<t1< <ty<t My - Me, N, dity ...dty,

we can write (H,(v))? as sum and integral of terms like

ContO (le» Uvo%{)) COUth (ka; ka+10v,’c+1)

Uy, =
X ‘ ‘Covx (av.,av. )
i=1 .
h € { } '
where v € (v, ..., Vx414, Vo v}

!/ !/ !/ !/
and vy, Vg+1 € T, Vo ~ Vg, Vg4+1 ~ Vi1, ANA Vg, Vg1 € 0TR4q



Comparing X;* and Xf+1

k-1

COvXtO (0771’ Gvo O-U(I)) COUth (Gvk’ O-Vk+10-v,'<+1) 1_[ Conti(Uvi’ Ovi+1)

i=1
where v € {vg, ..., V1), and Vg, V41 € Tr, Vo ~ Vg, Vi41 ~ Vi1, and v, Vi1 € 0Tg41
Given v, we wish the sum (and integral) of all such terms

decay fast in R (want Y| XR(v) — XF*1(v)| < 0 as)).

A direct bound: in a tree, external fields
only decrease covariances:

0 < Covp(oy, 0,) < Covy(oy,,0y)
= (tanh ﬁ)dist(u,v) < g~ dist(wv)/2 Vo vy V3

1
(recall tanh f < 8d 2).

A bound of (tanh g)4istwov)+-+distwevic+1) g ot enough!

e.g. Zvo,vzeaTR d—(dist(vo,v)+dist(v,v2))/2 ~ dR



Comparing X;* and Xf+1

k-1

ContO (le: Uvo%(’)) COUth (kar U"k+1avz’<+1) ‘ ‘ Conti(Jvi’ Uvm)
i=1
!/ !/ I/ !/
where v € {vy, ..., Vg11}, and vg, Vi1 € Tr, Vo ~ Vg, Vig1 ~ Vgyq,and Vg, Vyyq € 0Tgyq

A bound of (tanh B)4istWov1)+-+dist(vivk+1) i not enough!

—(dist(vg,v )+dist(v,v 2 ~ AR
e_g_ Zvo;vzeaTR+1 d ( ( 0 ) ( 2))/ ~ d )

Suffices to have one extra factor:
% (tanh '8)dist(vO,v1)+.--+dist(vk,vk+1)+dist(vk+1,v0) Vs

Each (tanh B)* corresponds to a walk ‘g 7 '3
starting and ending at v with length L;
there are ~ (d + 0(1))%/2 such walks. Yo v

Or the prob of a random walk starting from v. At each step, with
prob %2 moves farther from v, and prob % moves closer to v.



Estimating E [(Hf’y(v))zl

E Cavxg),y (0-171’ Uvo%(’)) Covxgéy (kar O-vk+10-17;,(+1) ‘ ‘ COUXE»V(UW Uvm)]
. l
i=1

< (C tanh ,8)diSt(vo’vl)"'"'+diSt(vk;vk+1)+diSt(vk+1;Uo)

Actually we can write
sinh(Xt(u’))(tanh ﬁ)diSt(ul'”)

Z(th(u’,v))z

Covy, (0y, 0,0y,) =

tanh dist(u,v)
Covy, (oy,0,) = (an_ 2 3 4
(Zx,(wv))
— ZXt(u,v) Vo v U3
= > 1
where Zy, (u, v) Zar) = 1.
v(’) v§

sinh(XtO (vo)) sinh(th (vk+1))

Need: E _ 2
(HiZXti(Ui»le))

< (C tanh B)4istWi+1.v0)



Estimating «[(Hf’y(v))z]

sinh(XtO (vo)) sinh(th (Uk+1)>

(HiZXti(vi»le))z

Need: [E < (C tanh ﬁ)dist(vk+1,v0)

The LHS is ‘like’ IE[avo Oy, 1:, which equals (tanh B)4ist(k+1.v0)
However, the weights make it hard to compute directly.

Recall how we compute IE[avO Oy, 1]: one way is to take the path
from v, to v, 4, and it is a Markov chain.

v v
o’ o o ° o (1

Solution: reveal the field gradually



Estimating [(H

- (X, (vo)) sinh (X, (vk+1))_

(H-Z}t(vi1%+1))2

For 0 < ¢ < dist(vy41, vp), CONStriiEt THEHSTE [Ty
I(£X;, (vo) > 0) smh(|Xt0 (vO)D
duy , = > d
(Hl Z;((? (i, Vi+1))
Where Z )(;2 is Zy, restricted to G

i

We couple u, , with u_ , inductively (in £), minimizing
E,,, [sinh (th (vk+1))] - E,_, [sinh (th (vk+1))]

Uk+1



Open Problems

Some directly related questions:
1) Extend the analysis to full intermediate regime?

The reason we require tanh 8 € (d~%,8d~1/?) instead of
tanh B € (d~1,d~'/?) is technical, rather than intrinsic.

2) Find a simpler FIID?
[s there a more direct construction, avoiding the computations?

3) What is the relationship between FIIDs and
reconstruction/extremality?



1RSB models

Several models (colourings, large independent sets, k-sat) are in the
one step replica symmetry breaking universality class.

OQQQO
O@oe | o .

Thresholds Colouring IS/Hardcore
: log d
Clustering dlogd @ ==
Algorithms dlogd a = loi d
- 2log d
Colourability / 2d logd ==

MAX IS



Full RSB models

Example: Sherrington-Kirkpatrick model, antiferromagnetic Ising
model.

For spin glasses Subag ‘18, Montanari ‘19, El Alaoui, Montanari
Selke '20 gave algorithms that give (1 — €) approximation to the

ground state.

Should also apply to anti-ferromagnetic Ising model:

Max Cut=n (% ++/d P, + 0(\/3))

|Dembo, Montanari, Sen]|
The Gibbs measure is not locally optimal.



[Thank you for listening



