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The repeated average process

Consider a following Markov chain on Rn (Bourgain ’80):

Start with x0 = (x0,1, . . . , x0,n) ∈ Rn. At step k , given xk ,
1 pick two distinct coordinates I and J uniformly at random,
2 replace both xk ,I and xk ,J by (xk ,I + xk ,J)/2,
3 keep all other coordinates the same,

to obtain xk+1.

Background: quantum computing; distribution of wealth; etc.

Related studies/models: [Chatterjee, Seneta, 77] [Feller, 68]; consen-
sus algorithm [Olshevsky, Tsitsiklis, 09] [Shah, 08]; local iterated av-
eraging [Diaconis, Saloff-Coste, 12]; convergence on general graphs
[Aldous, Lanoue, 12]; Deffuant model [Häggström, 12] [Lanchier, 12];
Kac walk [Kac, 54] [Pillai, Smith, 17]
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The repeated average process

Asymptotic behaviour?

This is not irreducible: almost surely converge to (x̄0, . . . , x̄0) for
x̄0 = 1

n
∑n

i=1 x0,i .

Question: rate of convergence?

In terms of L2: can be explicitly computed

E(
n∑

i=1

(xk ,i − x̄0)2) = (1− 1
n − 1

)k
n∑

i=1

(x0,i − x̄0)2

More relevant (and difficult): L1 distance to (x̄0, . . . , x̄0)?

Consider T (k) =
∑n

i=1 |xk ,i − x̄0|.

The initial condition matters:
take x0 = (1,0, . . . ,0), a worst case by linearity.

Lingfu Zhang Princeton Repeated Average Cutoff May 7, 2021



The repeated average process

Asymptotic behaviour?

This is not irreducible: almost surely converge to (x̄0, . . . , x̄0) for
x̄0 = 1

n
∑n

i=1 x0,i .

Question: rate of convergence?

In terms of L2: can be explicitly computed

E(
n∑

i=1

(xk ,i − x̄0)2) = (1− 1
n − 1

)k
n∑

i=1

(x0,i − x̄0)2

More relevant (and difficult): L1 distance to (x̄0, . . . , x̄0)?

Consider T (k) =
∑n

i=1 |xk ,i − x̄0|.

The initial condition matters:
take x0 = (1,0, . . . ,0), a worst case by linearity.

Lingfu Zhang Princeton Repeated Average Cutoff May 7, 2021



The repeated average process

Asymptotic behaviour?

This is not irreducible: almost surely converge to (x̄0, . . . , x̄0) for
x̄0 = 1

n
∑n

i=1 x0,i .

Question: rate of convergence?

In terms of L2: can be explicitly computed

E(
n∑

i=1

(xk ,i − x̄0)2) = (1− 1
n − 1

)k
n∑

i=1

(x0,i − x̄0)2

More relevant (and difficult): L1 distance to (x̄0, . . . , x̄0)?

Consider T (k) =
∑n

i=1 |xk ,i − x̄0|.

The initial condition matters:
take x0 = (1,0, . . . ,0), a worst case by linearity.

Lingfu Zhang Princeton Repeated Average Cutoff May 7, 2021



The repeated average process

Asymptotic behaviour?

This is not irreducible: almost surely converge to (x̄0, . . . , x̄0) for
x̄0 = 1

n
∑n

i=1 x0,i .

Question: rate of convergence?

In terms of L2: can be explicitly computed

E(
n∑

i=1

(xk ,i − x̄0)2) = (1− 1
n − 1

)k
n∑

i=1

(x0,i − x̄0)2

More relevant (and difficult): L1 distance to (x̄0, . . . , x̄0)?

Consider T (k) =
∑n

i=1 |xk ,i − x̄0|.

The initial condition matters:
take x0 = (1,0, . . . ,0), a worst case by linearity.

Lingfu Zhang Princeton Repeated Average Cutoff May 7, 2021



The repeated average process

Asymptotic behaviour?

This is not irreducible: almost surely converge to (x̄0, . . . , x̄0) for
x̄0 = 1

n
∑n

i=1 x0,i .

Question: rate of convergence?

In terms of L2: can be explicitly computed

E(
n∑

i=1

(xk ,i − x̄0)2) = (1− 1
n − 1

)k
n∑

i=1

(x0,i − x̄0)2

More relevant (and difficult): L1 distance to (x̄0, . . . , x̄0)?

Consider T (k) =
∑n

i=1 |xk ,i − x̄0|.

The initial condition matters:
take x0 = (1,0, . . . ,0), a worst case by linearity.

Lingfu Zhang Princeton Repeated Average Cutoff May 7, 2021



The repeated average process

Asymptotic behaviour?

This is not irreducible: almost surely converge to (x̄0, . . . , x̄0) for
x̄0 = 1

n
∑n

i=1 x0,i .

Question: rate of convergence?

In terms of L2: can be explicitly computed

E(
n∑

i=1

(xk ,i − x̄0)2) = (1− 1
n − 1

)k
n∑

i=1

(x0,i − x̄0)2

More relevant (and difficult): L1 distance to (x̄0, . . . , x̄0)?

Consider T (k) =
∑n

i=1 |xk ,i − x̄0|.

The initial condition matters:
take x0 = (1,0, . . . ,0), a worst case by linearity.

Lingfu Zhang Princeton Repeated Average Cutoff May 7, 2021



The Cutoff

Take x0 = (1,0, . . . ,0), and consider T (k) =
∑n

i=1 |xk ,i − x̄0|.

A pre-cutoff:

By L2 decay and Cauchy-Schwarz, for k = n log n+cn with c > 0
we have

E(T (k)) ≤ e−c/2.

For k = (1
2 − ε)n log n there are only o(n) number of non-zero

entries and hence T (k) = 2− o(1).

How it decays between n
2 log n and n log n?
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The Cutoff

Take x0 = (1,0, . . . ,0), and consider T (k) =
∑n

i=1 |xk ,i − x̄0|.

Theorem (Chatterjee-Diaconis-Sly-Z. ’20)

As n→∞, we have in probability convergence

T (θn log n)→ 2, for any θ < (2 log 2)−1,

T (θn log n)→ 0, for any θ > (2 log 2)−1.

This also has a Gaussian cutoff profile.

Theorem (Chatterjee-Diaconis-Sly-Z. ’20)

Let Φ : R→ [0,1] be the cumulative distribution function of the
standard normal distribution. For any a ∈ R, as n→∞ we have

T (bn(log2(n) + a
√

log2(n))/2c)→ 2Φ(−a)

in probability .
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Proof Ideas

Let’s run repeated average:

W.h.p., initially be like

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
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Proof Ideas
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Unlikely to happen.
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Proof Ideas

Tree structure:

· · ·
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Proof Ideas

Tree structure:

· · ·

Each particle at level i corresponds to one 2−i .

Critical level log2(n): a particle at level log2(n) is reached at time
n
2 (log2(n) +

√
log2(n)N (0,1)).
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Proof Ideas

Tree structure:

· · ·

⇒ For k < n
2 (log2(n)− C

√
log2(n)): most coordinates are 0.

1 T (k) = 2− o(1).
2 This tree is a good approximation.
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Proof Ideas

Tree structure:

· · ·

For k ≈ n
2 log2(n): most weights are O( 1

n ).

⇒ L2-distance is of order O(n−1); run for Cn more steps to get
o(n−1), then by Cauchy-Schwarz T (k) = o(1).
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Thank you!
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